
THE PLANE CONTACT PROBLEM OF THE THEORY OF CREEP 

(Received 7 Hay 1959) 

The present paper presents a solution of the plan% contact problem of the 
theory of creep, taking into account aging and the change of the modulus 
of the instantaneous deformation of the material. 

This problem was studied in the linear formulation by Prokopovich [ 1 1 L 

Xn solving contact problems under the conditions of nonlinear creep* 
it is necessary to initiate the study from certain sufficiently well 
founded physical hypotheses regarding the relation between stress and 
deformations. From this point of view we do not consider it possible to 
use as a theory of creep one of the theories of aging*, since it may lead 
to incorrect results in solving these problems. As a fundamental physical 
hypothesis we here admit the theory of plastic heredity, advanced by 
Rabotnov 12 1 , and developed by the author 13 1 for aging material. 

A series of experimental investigations [ 4,5,6 I, completed recently 
and carried out especially to verify the basic equations of the theory of 
plastic heredity, which confirms a sufficiently good agreement of results 
obtained on the basis of this theory, with data from creep experiments 
for such materials as aluminum alloys, copper, low carbon steel and 
others. 

In Section 1 the basic equations of the theory of plastic heredity ar% 
presented, which relate the components of deformation and stress, taking 
into account creep of the material in the case of plane stat% of strain. 

Using these equations for a power law relating stresses and deform- 
ations, Section 2 presents a preliminary solution, directly in terms of 
stress. of the problem of equilibrium of a half-plane, under the condi- 

* We note that the theory of aging presented in various publications 
devoted to problems of creep is not related to the phenomenon of aging 
of materials, 
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tions of nonlinear creep subjected to a concentrated force applied 

normally to its free boundary. 

Further, using this solution, it is proved in Section 3 that the 
solution of the plane contact problem of the nonlinear theory of creep 

reduces to a simultaneous solution of two coupled integral equations. 

A discussion and solution of these equations are presented in sub- 

sections 2’-4’ of this same section, for both cases of symmetric and anti- 

symmetric loading of compressed bodies. 

1. Relation between deformations and stresses for nonlinear 
creep. In the general case of a three-dimensional state of stress, the 
equations of the theory of plastic heredity which relate the strain in- 
tensity t .(t) with the stress intensity ai( taking creep of the 
material into account, are of the following form: 

Here C( t, r 1 is the measure of creep of the material and Qt*E E i (t )I 
is some function which characterizes the nonlinear relationship between 
stresses and deformations: both of these functions are determined from 
an experiment of simple creep: r 1 is the age of the material, t is the 
time. 

It is assumed 

Ei (t) = _&_ p$, (t) _EZ (L)]2 _t [&, {t) -- Ep (t)l” + Ia, (4 -Q (W + f9rea ft) (1 a3 
5i (t) = +- vqoo (t) - ciL (t)]’ + [z, (t) - b/. (t)]’ + [CT, (t) - a* (t,]” + 65,gy (t, 

Using the usual transformation formulas relating the ccmponents of 
stress and strain in cylindrical coordinates (r, 8, z) with the corres- 
ponding components in a system of principal axes, and assuming that the 
stress and strain deviators have equal principal directions at any instant 
of time t, it follows from (1.1) for the case of plane state of strain* 

* For the sake of brevity the arguments rr 8, L are omitted. 
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%j (t) ‘p [Ei (t)] = I56 Ct) - 5 (t)] - i [ae (7) - 3 (T)] ““f; ‘) dT 

Tl 

E*(t) = 0 

where 

We note that equations (1.3) describe processes of 
both aging and heredity of the material into account, 
active deformations; the criterion of activity is the 
of 6 $). 
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(1.3) 

(1.4) 

deformation, taking 
and are valid for 
condition of increase 

These equations are deduced assuming incompressibility of the material: 

E (t) = E,. (t) + Ee (t) = 0 (I 5) 

Experimental creep curves for metals are sufficiently well described 
by the power law of the form 

p* 1% (t>J = ‘p [Ei (t)J Ei (t) = K&” (t) (1.6) 

Here K, and p are some physical constants determined from a simple 
creep test. 

The available experimental data regarding the creep of metals and other 
structural materials under constant loading [7 I show that with increase 
of loading the total deformation usually increases more rapidly than pre- 
dicted by a linear law. Analytically this condition is expressed by the 
inequality 

$>o for t=tl= const (1.7) 

Therefore, for the creep law (1.1) and (1.6) adopted here, this condi- 
tion will be satisfied for 

Kil> 0, [J< 1 (1.8) 

2. Equilibrium of the half-plane, subjected to a concen- 
trated force, applied to its free surface, under the conditions 
of nonlinear creep. Let us consider the quasi-static problem of 
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equilibrium of a half-plane subjected to a time-dependent concentrated 
force P(t) applied to its free surface, taking creep of the material into 
account, and for a power law (1.3) and (1.6) relating stresses and strains. 

This problem, for plasticity with a power-dependent hardening in terms 
of stresses, was solved by Sokolovskii 18 I, who determined the stress 
and strain distribution in the half-plane under the conditions of 
simultaneous action of a vertical and a horizontal force applied to its 
surface. 

However, the problem of determining the displacements in the balf- 
plane considered. usfng the given components of strain presented in paper 
f 8 ] , is reduced to the solution of differential equations with variable 
coefficients. which are not integrable in closed form. 

In this section. based on the fundamental equations (1.3) and (1.6) 
of the nonlinear theory of creep, the solution of this problem directly 
in terms of displacements is given, because it is precisely in this form 
that we will need this solution subsequently, when studying the plane 
contact problem of the theory of creep. 

We place the origin of a cylindrical system of coordinates (r, 8, z) 
at the point of application of the concentrated force Pft> to the half- 
plane and direct the axes r, 0 and x, as indicated in Fig. 1. 

Then, solving equations (1.3) which relate the components of strain 
with the components of stress under the conditions of nonlinear creep, 
with respect to [o,(t) - o(t)1 ,[oe(t) - o(t)1 + t,,(t) and taking into 
account relations (1.41, (1.5) and (1.6) we obtain 

Qz @) = + IQ,(~) + -JB (OJ 

where R( t , r ) is the resolvent of the creep kernel K( t , T ) = X( t, r j/c% , 
that is, the relaxation kernel. 

The equations of equilibrium in the cylindrical system of coordinates 
fir, 6, z 1 applicable in the given problem are of the form: 
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The relations between the c~pon~~ts of strain and the ~~~~ts of 
displacement are 

where u(t), v( t 1, the components of displacement along the directions of 
coordinates (r, 8, z> at the instant of time t, yield the differential 
equation of strain compatibility in the form 

a2a, ft) aage fti 
aa +r2-@T 

aee ($1 aa, (4 
+2r--&---r-- aa7re(t) 

& 2r -- 
6+ a0 

2 ak3 0) = 0 (2 4) 

ae 

The boundary conditions of the problem are 

06 f4 = z,$) ($1 = 0 for 8=-J-+ 

that is, the free surface of the half-plane is free of external loading, 

We shall seek 
displacements in 

an exact solution of the formulated problem in terms of 
the following form: 

@ @I = x Ifi PI X8 (4 O-i- 10’ (8, $11 

2’ @I = x IA I4 X P, t> - fa (4 q1 (2.6) 
W= 0, x=-t_* 

where flfrP), f,(rl, ~03, t) and f,(O, t) are some 
single-valued and continuous functions, to be defined 
in the whole half-space - n/2 CI 0 < ~12 and r > 0 at 
any instant of time t ) 7%. am-. 1 

From the first two relations (2.3) we have 

s, ff) = &’ (4 X1 (4 Q, se (t) - x + ffz (4 4” r’t @>I xt (4 $1 (2.7) 

Using relation (2.7) and the condition of inc~~~ssibility of the 
material (1.51, we find 

A! PI = - IA PF) f -f- fi PII (2.8) 

We assume that the shear stress r &g(t) is equal to sero in the whole 
half-plane for any t. lhen by virtue of f2.11 and (23) we have 

Substituting into (2.9) the expression for the components of displace- 
ment and their derivatives from (2.6) and using equation (2,8), we obtain 
the fallowing equations for the determination of the functions fOt-,Ce, t), 
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x(6, t) and fl(F): 

lo” & t) i- fo (4 0 = 0, f (0, t) + x‘$y (6, t> = 0 

1”2f>n (r) + rjt’ (r) - [I - k’] fi (rf = 0 

where X is a parameter to be determined later. 

The general integral of the equation (2.11) is 

II (r) =I &&l--hl + D,r- IGF for - 03 < A2 < 1 (2.l2) 

Here D, and D, are the constants of integration. 

Admitting the obvious condition that for r J bo the displacements u(t) 
and v(t) should be finite for arbitrary t > r 1, we obtain D, = 0 by 
virtue of the relations (2.6), (2.8), and (2.12). 

Then expression (2.12) for fl(rf takes on the form 

fi (r) = r-G= (--<k2<1) (2.13) 

where for the sake of simplicity of further calculations it is assumed 
that D, = 1. 

Using relations (2,3), (2.6), (2.7), (2.8), (2.9) and (2.13) we find 

E, (t) = - &e (t) = - x r/l - ~+WJr-n’) x’ (0, t) 

rte (0 = sz (0 = 0‘ (2.14) 

‘Ihe intensity of shear strain E i(t), by virtue of relations (1.2) and 
(2.14) will be 

2 Q(t) = 18). (t) I = 1/i - h’r--(lffl-h ‘x’ (0, t> (2.15) 

Substituting the expression for the components of strain 6 r(t), e@(t), 
y,@(t) and 6 i(t) from (2.14) and (2.15) into (2.1), we obtain 

op (t) = 0’e (t) - 2xX, [r/l - )?r-(l+-=+Hr (0, t) 
(2.16) 

where 

$2 (t) = -+ 1% (t) + Qo (1)1, \% (t) = 0 

~(0, t) is here the solution of equation (2.10). 

‘Ihe expressions (2.14), (2.15) and (2.16) for the components of strain 
and stress, by virtue of equation (2. lo), identically satisfy both the 
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equations of the theory of plastic heredity (1.3) or (2.1)) and also the 

equations of strain compatibility (2.4). 

Substituting expressions for the components of stress from (2.16) into 

the equilibrium equations (2.2), we find that these equations will be 

satisfied if we set 

I/1-,.e=+ so = const (2.18) 

&It on the free surface the stresses vanish, that is 

Sg (t) = TrB (8) = 0 
1 

for %=+~x and t>~tl 

These conditions are compatible with (2.18) only in the case ‘when 
cJe( t) = 0 everywhere. 

Then expressions (2.16) and (2.18) take on the form: 

cir (t) = - ““““: - lJW HI (8, 1), 30 (t) = Tre (t) z 0 

xK,(m--1)L” 
o*(t) = - __ H,(0, t), hz = ‘9 , 1 

m = - 
r 1* 

(2.19) 

where the 

P (t) = - 
I 

a, (t) r cos fl d0 
-%= 

(2.20) 

From relation (2.19) it follows that for 0 < p < 1 the parameter X2 
varies in the range - 00 < X2 ( 1, whereby the sign of the equation 
/.I = X2 = 1 corresponds in accordance with (2.1) to the case of equilibrium 
of a half-plane under the conditions of linear creep of the material. 

We proceed to the determination of the displacement u(t) and u(t) in 
the ha1 f-p1 ane. 

‘Ihe solution of the first differential equation (2.10) is 

t* CA 0 = & W cos fJ + D,(t) sin % (2.21) 

The solution of the second differential equation (2.10) will have a 
different form depending upon the value of p. For p = l/2 the function 
~(6, t) will be linear with respect to 8: 
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and for p f l/2 the function x(6, t) is expressible by means of trigono- 
metric or hyperbolic functions in the following manner: 

x P, 1) = & G) cos he + D4 (t> sin he (P > +, (2.23) 

x (e, t) = D, ft) ch ke + D4 (t) sh he (P < f, 

Here D (t 1, D,(t 1, D,(t) and D,(t) are arbitrary functions of inte- 
gration wk xh depend only on t. 

We assume that the half-plane considered is not being displaced in the 
horizontal direction and is not rotated, so that 

v(t)=0 for fl=Oand taE:71 (2.24) 

Then in accordance with (2.61, f2.21), (2.22) and 12.23) we will have 

Ds (t) = De(t) = 0 (2.25) 

and the expressions (2.211, (2.22) and (2.23) for functions f0 (0, t ) and 
~(0, t ) take on the form 

f. (e, t) = Ds (t) sin e 

x (0, t) = o4 (4 e 
x (0, t) = D4 (t) sin ze 

x (e, t) = D, (t) sh ge 

where 1 and p are related to p as 

(2.27) 

Now, using equations (2.17), (2,19), (2.20) and (2.261, for the deter- 
mination of D, (t ), we obtain the following Volterra integral equation 

Here 

t 

D,*(t) = p (4 - - 
K, (m - i)@ J (IL) c 

D4* (T) R (t, T) d7 (2.28) 
* 
7, 
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1y, and p are the physical constants which characterize the power law of 
the nonlinearity (1,6), 

The solution of equations f2.28) is 

since R(t, T 1 is the resolvent of the creep kernel Xf t, T ) = K(t, r I/%. 

Substituting into relations (2.6) the expressions of the functions 
~(6, t), f016, t), f,(r) and f2(r) and their derivatives from (2.26), 
(2.131, (2.8) and using the expression for the function D,,(t) (2.301, we 
obtain 

v(t) = 
[M - 2) [(f -L) P(a)]” 

&,” fttz. - 1) Jm (p) 
r++y (8,p) - Q6 (t) sin 0 

Here )[, is the Volterra integral operator of the form 

Ly(t) = f y (7) ackT) ctt (2.32) 

r(%ELI = 6 (p = -&)‘I 3 (4 of = sin JO f~ > f) (2.33) 

~(~,~~=~~~~ (F < $4 

‘lhe displacements of the boundary points of the half-plane, that is 
for 19 = f n/2, in accordance with (2.31) and (2.33), will be of the form: 

Here 
(3.33) 

A=O, R= 1 
ftiK,.’ (P= $, 

A- (’ - m) sin l/&ix 
B= 

I CDS ‘,‘&z 

from (m - 1) .I” it*) 
f 

k-0,” (m - 1) 7’ (p) 
(k > $1 

A (2 - JJ?) Sh ‘/& 

= Kom(J,t--l)fm (p)’ 
R 

fi rlt ‘i& 
= h-,‘n (1JJ - I) P” (p) 
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‘Ihe equations for u( t ) and v( t ) obtained above are valid when the 
material is under the conditions of nonlinear creep, that is, for 

o</L< 1. 

We note that, as follows from formulas (2.34) and (2.35), for a 

quadratic law of nonlinearity, that is, for p = l/2 and m = 2, all bound- 

ary points of the half-plane undergo instantaneous rigid displacements in 

the vertical direction which are equal to 

2‘ (t,! = -0 (t) = D (t) for 8 = * + 

Using relations (2.19) and noting that in accordance with (2.17), 

(2.26) and (2.28) 

i (0, t) = D,’ (t) [Y, (0, [L)]!J = D,!J (t) [7,’ (4, /A)]9 

we obtain the following final formulas for the stresses o,(t I and az(t ): 

q(t) = - 
2P (t) [TJ’ (0, ;L)]:” 

3, (t, = - P (I) [‘r’ (03 lJ)l” 
rJ (IL) ’ rJ (I*) 

(2.3;; 

which, for each fixed instant of time t = tl, coincide with the formulas 

for the stress in the half-plane under the conditions of plasticity, with 

a power law governing the hardening of the material given in paper [ 9 1 . 

These formulas were obtained in a different manner by Sokolovskii [9 1. 

‘lhus, the stress distribution in the half-plane considered (2.37), 

coincides identically with the system of stresses which correspond to an 

instantaneous problem of the nonlinear theory of elasticity for the same 

half-plane, even though the strain rates turn out not to be constant 

here, but are variable, since the factor D,(t) to be determined from 

Volterra’s integral equation (2.28) depends on time t. Under the condi- 

tions of nonlinear creep this is explained by the fact that the system of 

equations (1.3) and (1.61, even though it represents the equations of 

steady creep, understood in a broader sense than the usual one, is still 

reduceable, by means of the elastic analogy as in the usual case, to the 

corresponding instantaneous problems of the nonlinear theory of elasticity. 

3. The plane contact problem of the theory of creep. f. 

Formulation of problem and deduction of basic equations. Using the non- 

linear - elastic analogy as a basis, we consider in a general form the 

solution of the contact problem of two bodies bounded by smooth surfaces 

which are in the conditions of nonlinear creep, obeying the power law 

(1.6) which relates the deformations with stresses. 

Let two bodies, in contact with each other at a point or along a line 
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(Fig. 2), and which possess the property of creep, be compressed by means 

of external forces whose resultant P is perpendicular to the x-axis and 
which passes through the origin of the system of coordinates. 

The relation, which has to be satisfied by the displacements of the 

points of the contact region of these bodies, is of the form: 

q (t) $ v,(t) = 6 (Q- fl* (z) --f2* (z) (3.1) 

where 6(t) = s,(t) + s,(t) is the approach of these bodies in the direct- 

ion of the axis oy, and f,*(x) and f**(x) are the equations of the sur- 

faces, bounding the first and the second bodies. 

We shall assume further that friction and cohesion between the two 

compressed bodies are absent. 'Iben, on the contact area each of these 

bodies will experience only a normal press- 

ure which will be designated by p(n, t). 

However, the contact region will usually be 

small as compared to the dimensions of the 

compressed bodies, and therefore, it may be 

assumed that the displacements on the con- 

tact area of the compressed bodies will be 

the same as those of the boundary points 

of two half-planes (an upper and a lower), 

subjected to the action of the same normal 
Fig. 2. pressure p(x, t) as the compressed bodies 

considered. 

We divide the pressure diagram p(x, t), acting on the contact area 

S(U< X< b), into elementary strips of widths ,?lsi and height p(si, t) 
(i = 1, . . . . n) and consider the effect of one such strip (for example, 

ith) on the lower half-plane. 

If a concentrated force P,(t) = p(si, i):5si is applied at the point 

x = si normal to the boundary of the half-plane, then the boundary point 

of this half-plane with abscissa x will be displaced by u(t) in the 

direction of the axis oy, which can be determined in accordance with 

formula (2.34) 

2, (t) = A [(l -L) Pi (t)lm 1 Si - 2 I’-” -1. D(t) 

or in a different form: 

r*(t) = Izi (t)~(~i, t) ASP 

(3.2) 

(3.3) 

where 

h,(t)=Al”ISi-_lIcl-l(l-L), 2). (t) = [v (t) - D (t)]” 
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(3.41 

Tn what follows, v*(x, t) will be called the generalized displacement 
of the boundary points of the half-plane. 

For the case of simultaneous action of a system of forces Pi( t ) = 

P(S ‘I t).Is .(i = 1, . ..) n) the generalized displacement u*(x, t) of the 
arbitrary p:int on the boundary of the half-plane, will be in general a 
certain function of these forces v*(x, t ! = v*[P, (t ) P, (t f, . . . , Pnf t f i , 
which can be represented in the form 

j=n Ken j-,n 

V* (t) = IX Cj (t) p (S , t) ASP + 2 2 Cj, (t) p (s&, t) p (sj t) AS* ASj $ 
j=I h‘=1 jE[ 

where C.(t), C. (t) and CVjk(t) 

also on'x and !~t(i = 1, 

are certain coefficients which depend 

***, n), which are omitted for the sake of brevity 

in the notation; 

However, on the other hand, if only one force is acting, that is, if 
P,(t) = 0 for j # i and P.(t) = P.(t) for j = i, expression (3.5) for 

v*(t) should coincide ide~ti~ally~~ith the exact solution of this problem, 

given by formula (3.3). As a consequence we will have 

CI (t) = hi (t)9 c’ii (t) = 0, Ciii (t) = 0 (3.6) 

and the expression for the generalized displacement v*(t) takes on the 
form: 

2.’ (2) = 2 hj (t) p (Sj, t) Asj + 
+I 

+ i Cjk (t) p (sj, t) p (Sk. t) Asj A% f . . . ii, k := 1, . . ., nf (3.7) 
jik 

Since the area of contact S(a < x < b) is small, it.is possible to re- 

tain in expression (3.1) for the generalized displacement v*(t) only the 

principal term of the expansion, staying within the same range of accuracy 

as was assumed in solving the given problem. We then obtain from express- 

ion (3.7), after passing to the limit as :Asi + 0 

(3.8) 
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where the integration is carried over the whole area of contact S(a ( 

x < b), which in the general case will be dependent on time; hence, 

using formula (3.4) which determines the operator I,, we obtain the 

generalized displacement u*(t). For the displacement u(t) of the contact 

points, we obtain 

r(t) = A [(l-L)\ P(sBt)ds, ]“‘D(t) 
i s Is-rp-4 

where m = l/p and the constant A is determined in accordance with (2.35). 

If the same normal pressure p(n, t) were acting on the boundary of the 

upper half-plane, then the boundary point with abscissa x would undergo 

a displacement oy in the direction of the axis u(t), which will be equal 

to 

v (t) = + D (0 

Thus, under the assumptions stated above, the expressions 

placements v,(t) and u,(t) for the first and second body, in 

with (3.8) and (3.91, will be 

Here 

v,(t) = ‘&[(I -L)j p(SVt)ds jnlTDl(t) 
s Is--If-+ 

v2 (t) = A, [(I - L) j , ;‘“$tH 1”’ -c D, (t) 

A, = (2 - m) sin l;* lx 

KJlrn (n - 1) Jrn (P) ’ 
A, = (2 - m) sin l/s In 

~oarn cm - 1) Jrn (P) 
(P 

A, = (2 - m) sh I/* !$T 
A, = (2 - m) sh 1/2 pn 

K,~m(m--1\.P(p) ’ &a”’ cm - 1) J”’ 0~) 
(P 

A, = A, = 0 W = +) 

(3.9) 

for the dis- 

accordance 

(3.10) 

(3.11) 

> $1 

< +, 

where K,, and Ko2 are physical constants of the first and the second body. 

Substituting the expression for u1 (t) and u2 (t) from (3.10) into the 

relation (3.1) for the determination of pressure p(x, t) we obtain the 

following integral equation: 

1 

s P (s, t) ds 
s Is-Zip-l 

p(svT)ds ac;:,7) dr = [~(t)-jfo(s)]l” (3.12) 

where 
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in (4 = il’ (4 + 12* (rf 

-4$-A 

and where fo((x) does not depend on t, S(n < x < b) is 

which will in general be a function of time, and y(t) 

function of t, to be determined later. 

'Ihe integral equation (3.12) may be represented in 

namely, as the following two integral equations: 

the contact width, 

is the unknown 

a more compact form, 

Here and subsequently, for the sake of brevity, we shall designate 
by w(x, t) the function which, being the solution of the integral equa- 

tion (3.131, depends both on the arguments x and t, as well as on the 

unknown function y = y(t), which enters into the right-hand side of this 

equation, that is r&r, tf = w?x, t, y(t) f. 

Thus, the solution of the plane contact problem of the nonlinear theory 

of creep which in essence consists in finding the unknown function of the 

two variables p(x, t), which characterize the distribution of the press- 

ure intensity along the contact of compressed bodies, is reduced to a 

simultaneous solution of two coupled integral equations (3.13) and (3.14). 

'Ihe first of these, which has to be satisfied by w(x, t) as a function 

of time t, takes into account the effect of creep of the material on the 

distribution of contact forces, and represents a linear Volterra integral 

equation of the second kind, which, for various cases of creep kernels: 

K(t, 7 1 = dC(t, 7 )/a7 was investigated in detail in the publications 12, 

3, 101. 

The second integral equation (3.141, which has to be satisfied by 

P(Xt tf, as a function of the argument x, represents a singular Fre~olm 

integral equation of the first kind with kernel 

and with 

integral 

K (S, z) = 1 .s - 5 p--l (O<p<l) 

the right-hand side ~fx, t), which is the solution of the first 

equation (3.13) and which may be considered at each fixed t as 

a basic integral equation of some plane contact problem of the nonlinear 

theory of elasticity, whose method of solution is presented further below 

in subsection 2-4 of the present section. We shall note that for t = r1 

we obtain from the general solution of the basic equations of the plane 

contact problem of the nonlinear theory of creep (3.13) and (3.14) 
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directly the solution of the contact problem of the theory of plasticity 
with a hardening of the material obeying a power law, as presented in 
paper I9 1. 

In fact, for t = r1 we have in accardance with (3.13) 

~(G%J = "(2) = IT-!fo@)?U 

and the integral equation (3.14) takes on the form 

which, as is shown in paper t93, is the basic integral equation of the 
plane contact problem of the theory of plasticity for a material with a 
strain hardening which follows a power law. 

If C(t, r 1 EZ 0 and y(t) = y = const, that is, if the material of the 
compressed bodies does not exhibit creep, then we again are led to the 
contact problem of the nonlinear theory of elasticity, described by 
equation f3.15). 

2, Solution of the basic integral. ~~~~~~u~ (3.14) of the phe contact 
problem of the ~#~~~~e~~ theory of creep. Let the initial contact of the 
bodies to be compressed in the plane xy be at a point, which is taken as 
the origin of the coordinate system (Fig. 2). 

We assume further that the portion of the axis ox, - a(t) < x( + a(~). 
is the contact region S between these bodies, which in general will be 
time-dependent. 

Then the basic integral equation (3.14) of the plane contact problem 
takes on the form: 

where G&X, t> is the solution of the Volterra integral equation (3.13) 
which is investigated in detail for various cases of creep kernels 
K(t, r) = &Xl, 7 >/a T in the publications [2,3,10 I ; therefore we will 
not dwell upon this item, assuming in what follows, that o(n, tl is 
known, or may be found by using methods developed in these works. 

As was already indicated, o(n, t), being a continuous function in the 
region n(t),< x< aft1 and?,< t<m, depends also on the unknown func- 
tion y(t), which enters into the right-hand side of the Volterra integral 
equation f3.131, that is o(x, tl= w*Ix, t, rft) 7. 
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‘Ihe limitations, imposed on win, t 1, as well as the equations which 

determine y( t 1 will be given in the following. 

Equation (3.16) was first studied by Carleman [ 11 1, In a recently 

published paper by Akhiezer and Shcherbina 112 1 another method of solu- 

tion of this equation is given, making use of transformation formulas of 

singular integrals. 

To solve this singular integral equation (3.16) we use in the present 

paper the method suggested by Krein [ 13 1 , applicable for the solution 
of Fredholm integral equations of the first and second kind with kernels 

of the form 

K (s, z) = H(is- x: 1) (3-U) 

This method permits us to obtain the solution of such equations in 

closed form for a series of other kernels of the type (3.1’7). Furthermore 

for the known cases the application of this method yields solutions, which 

differ from the known ones by the fact that they do not contain singular 

integrals, taken in the sense of Cauchy. 

It should be noted that the solution of the equation of the contact 

problem of the linear theory of elasticity free of singular integrals was 

first obtained by Rostovtsev [ 14 I. 

J..et us desimate by g(s, a) the solutio,l of the equation (3.16) for 

&x, t f = 1. Yhen the general solution of equation (3.161, in accordance 

with [ 13 ] , will be expressed by the formula 

(3.18) 

Here 

aw (s, t) 
flJ' (S, t) = ils (3.19) 

i, 

2 a = 2 aft) is the width of the contact which, in general, depends on 

time t,but t, for the sake of brevity is omitted in (3.18); y(t) is an 

unknown function of t, which enters into the right-hand side of the inte- 
gral equation (3.13) and therefore 
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If the contact width 2 a (t 1 = 2 a is given, then y(t) is determined 
from the e~ilibri~ equation 

-co 
P= 

5 
p (2, t) dx (3.20) 

--Cl 
where P is the resultant of the external forces acting on the compressed 
body, whereby in deducing equation (3.16) it was assumed that P is per- 
pendicular to the x-axis and passes through the origin of coordinates. 

We now assume that any constraints inhibiting the rotations of com- 
pressed bodies are absent. We construct the basic equation of the contact 
problem under these conditions. 

Relation (3.11, which connects the displacement of the boundary points 
of the compressed bodies v,(t) and u,(t), was obtained under the supposi- 
tion that in compression these bodies undergo only translational displace- 
ments 6, (t) and 8,(t) in the direction of the oy axis and that therefore 
they approach each other by an amount equal to 6(t) = s,(t) + s,(t). 

Let us now assume that these bodies undergo upon compression not only 
translational displacements s,(t) and s,(t) along the y-axis, but also a 
rotation with respect to the origin of coordinates through angles a,(t) 

and a,(t), respectively, whereby the positive sense will be taken to be 
the counter-clockwise one. Then, an additional approach will occur between 
the boundary points of the compressed bodies on the abscissa X, equal to 
a,(t)n, where a,(t) = a1 f t) + a2 (t 1. In order to obtain for this case the 
condition which must be satisfied by the displacements of the contact 
points v,(t) and u,(t) of the compressed bodies, the constant approach 
8(t) in the relation (3.1) should be replaced by the variable approach 
8,(t) + a,(t)x. We will therefore have 

%fQ -I- v2@) = 6 (4 + a,@> x--1* (4 -j2. (4 (3.21) 

Substituting into (3.21) the expressions for u,(t) and u,(t) from (3.101, 
we arrive at the same integral equation (3.121, with the only difference 
that on the right-hand side instead of the function F(x, t, y(t)) = 
fyft) + f,(x)] f~ there will be 

where 
a (Q = a, 

A1 + A2 ' 

f. @> = II’ (4 c fz’ (4 

AI+& 
(3.23) 

and the solution of the Volterra integral equation (3.231, which as before 
will be designated by o(n, t 1, will contain not one but two unknown func- 
tions: y = y(t) and a = a(t), that is, in this case &, t) = w*[z,, t, 
y(t), o(t) I; the values of the function y(t) and a(t) for given contact 
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with 2 a are determined from the equilibrium equations 
+a a 

P = 
s 

p(s, t>dz, M, = 
s P (2, t) 2 dJ: (3.24) 

--a --a 

where P is the sum of the projections on the y-axis of all external forces 
acting on the compressed body and M is the moment of these same forces 
with respect to the origin of coordinates. 

We note that, as follows from the paper [ 13 I, formula (3.18) supplies 
the unique integrable solution of equation (3.14), if M’(a) f O(O < u < b), 
where b is some finite constant and the function o(z, t) is differentiable 
and such that upon its substitution into formula .(3.18) the integrals 
which contain this function would be meaningful. 

We proceed to the determination of the function g(s, a), that is to the 
solution of the singular integral equation 

+a 

_-a 1 s--xIl--:~ = 5 g(sla)ds 1 (3.25) 

To this end, and following the idea of Krein [ 13 1 , we consider the 
integral 

(3.26) 

taken along the contour, composed of an external circle rR of radius R 
and the inner contour ABCDEFKLCNMQA which is designated by I?= (Fig. 3). 

First of all it is not difficult to convince oneself that the integral 
function 

f” (z) = &j = (z’_ $)‘/r”(z - .)l-!J 

(O<lJ <I) 

is divided on the external portion 
(-a, a) into three equal branches. 
In fact, we set $I = arg(t + a), 
q52 = arg(z - a) and $ = arg(z - x). 
In passing in the counter clock-wise 
sense along the arbitrary closed con- 
tour rot indicated by a broken line 

in Fig. 3, +1, & and c& will under- 
go increments of 277, and therefore 
arg f(z) = l/2Q2 + +,)cc + $(l- cc) 
will undergo an increment 2n and 
f(z) will return to the initial value. Fig. 3. 
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We shall consider that branch of the functions f(z), which at the 

upper boundary (-a, a) will take on a positive value, that is 

(2 -.)1--P > 0, (z"- aZ)'hb> 0 for z> 0 

'Iken, in accordance with Cauchy's theorem for multiply-connected 

regions we have 

where 

1 
Zai jR f(z) dz + & 5 fez = 0 (3.27) 

ra 

f (2) = (2 - a)--%I4 (2 _i_ g-*/PM (2 - x)“--1 (3.28) 

However, the integrals along the small circles CP', C M and C '" 

obviously approach zero if p + 0 and therefore 
P P 

1 * 
2ni 

\ f (2) d.2 = & [-yf,s, iO)ds+ -yf(s--iO)&] (3.29) 

rR i-a --a 

Here f(s + i0) and f(s - i0) are the values of the functions f(t) at 

the upper and lower boundaries of the portion f-n, a). 

However, noting that f(s - i0) = f(s + i0) (where the bar indicates 

the conjugate function), and changing the sense of integration in the 

second integral of the relation (3.29), we obtain 

1 s -ta 

2ni rR f(z)& = -+ \ Imf(s+iO)ds 

--a 
We evaluate the contour integral 

I, = f f (2) dz 

rR 

(3.31) 

where f(z) is expressed hy formula (3.281. To this end we employ the ex- 

pansion of our branch f(z) in the neighborhood of the infinite point. 

In accordance with (3.28) we have 

f (2) r= A&( 1 - $y (1 - ,!,-I (3.32) 

where (I- .2/z21-~/2 and (l- x/z)@-~ indicate those branches of these 

functions which are positive on the portion (a, 00) of the x-axis. Expand- 

ing the latter by the binomial formula, we find the residue of the 

selected branch f(z) at the infinite point. It will be equal to e-in 

(which is the coefficient of l/z with a reversed sign). Tben on the basis 

of the theorem of residues we obtain 
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(3.33) 

Substituting the value of this integral into relation (3,30), we find 
+a 

1 - 
TC s Imj(.s-1 iO)ds: -1 (3.34) 

--a 

Further, in accordance with (3.28) and Fig. 3, we have 

Substituting the expression for fls + i0) from (3.35) in (3.341, we 

finally obtain after transformation 

From here it follows directly that 

which is the solution of the integral equation (3.25). 

Using formulas (3.19) and (3.311, we obtain for M(s) 

(3.36) 

(3.37) 

(3.38) 

where r'(z) is the gamma function. 

Xn studying the state of stress in compressed bodies under the condi- 

tions of nonlinear creep subsequently , we will consider separately the 
case of symmetric and anti-symmetric loading of these bodies. This will, 

first, make the formulas obtained more lucid, and secondly, be appropriate, 

since each of these loadings represents a significance of its own, cor- 

responding to a definite characteristic deformation of these bodies. It 

should be noted that the case of arbitrary loading of compressed bodies 

cannot be obtained, as it follows from (3.18). (3.131, and (3.22). by 
means of superposition of the two cases indicated above, and must be 

solved separately a8 a distinct problem, with the aid of the general 

formulas (3.18). (3.13). (3.22) and (3.24). 

3. The symmetric contact problem of two bodies under the conditions 
of nonlinear creep. Let both the surfaces which bound the compressed 

bodies, as well as the external forces which act, upon them, be symmetrical 

with respect to the oy-axis. Then the equations of these surfaces 
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y = f,*(x) and y = - f2*(n) will be even functions of x, on the strength 
of which the right-hand side of the basic integral equation (3.12) of the 
contact problem F(x, t, y) will also be an even function; due to the 
evenness of functions g(x, a) and o(x, t), the last term of the right- 
hand side of formula (3.18) vanishes and it takes on the form: 

a 

p (z, t) = z- [” j 
,\I’ (a) da 

&' (S, U)6l(S, t) d.S 1 g (S, U) - (3.39) 

0 

We note that in calculations the second integral in (3.39) is sometimes 
conveniently represented in the transformed form on the basis of formula 
[ 13 1 

I 
(3.40) 

Substituting the expressions for g(s, a) and M(s) from (3.37) and 
(3.38) in (3.39) and using the equation (3.40), we obtain after trans- 
formation 

Here 

2 a = 2 a(t) is the variable contact width, where - a (t) < x < a(t), and 
y = y(t) is an unknown function of t, which enters into the right-hand 
side of the integral equation (3.13) and which has to be determined later. 
We recall that &, t) = o*[z, t, y(t) 1. Eiy means of substituting 
s = u sin 4, the expression for QI (u, t, y) from (3.42) may be represented 
in the form of the following integral with constant limits: 

‘Ax 
* q (U, t, 7) = 211--!L 
I 

6) (u silly, t) cosl--:* p Cl? (3.44) 

0 

Assuming the existence of a continuous and bounded derivative o(s, t) 
for s > 0, after differentiation under the integral sign (3.44), we 
obtain 
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zq (n, t, 7) = (1 - ;A) 01 (U, t, 7) f [ co, (St t, scis 
;; J/$&z - $)!^ 

(3.45) 

Integrating the last term by parts and noting that ~‘(0, t 1 = 0, the 
relation (3.45) is reduced to the form 

(3.46) 

0 

Hence we obtain by differentiation 

1‘ 

-& [u!Q,‘(u, t, 7)] = (3.47) 

Integrating by parts on the right-hand side in equations (3.47) and 

differentiating subsequently with respect to u, we obtain by virtue of 

the evenness of CL&X, t) 

Substituting this expression into (3.41) we obtain for p(x, t ) 
following final formula 

Here o(n, t) is the solution of the Volterra integral equation 

which will be a function of the unknown y = y (t ), that is o(n, t ) 
W*(X,t, y(t) 1 ) and the contact width 2a in the general case will 

on time t. 

(3.48) 

the 

(3.45) 

(3.13), 
= 

depend 

In formula (3.49) the first term represents the solution with singular- 

ities at the points x = + a and should be retained only in the case of 

given contact widths 2a(t) = 2a; the unknown function y = y(t) is to be 

determined from the equilibrium equation 

a 

P = 2 p\x, t)dx 
s 
0 

(3.50) 

The second term of this formula represents the continuous part of this 

solution. Substituting the expression for p(x, t) from (3.49) into the 
equilibrium equation (3.501, we obtain 
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Here the value of the integral has been used 

M(U) x sin 1/2 zt* ztl--I* 
2 sin ‘12 xjh = 2 (1 - p) K(p) x 

(3.52) 

Changing the order of integration in the last term of the expression 

(3.51) and using equations (3.52) and (3.43), we have 

or changing the order of integration once more and noting that 

we find 

Q 

\ 

udu = Cn?__ ,2)1--'h;* 

8 I/(tcz _ s’j:” 

(2 - :!.) 

(3.54) 

a 

P = J”;;; {aCD,‘(a, t, 7) - ‘-1 (a2 - ss)1--‘!?+!Y (s, t) ds} 2-p 
(3.55) 

0 

Using further the relation (3.46), equation (3.55) may be cast finally 
into the form: 

where w(n, t) is the solution of the Volterra integral equation 

with the right-hand side 

(3.56) 

(3.13) 

F@, t, 7) = [r(t)--~0(41~ ( fo (2: = 
h' (4 + fe' cs! 

1 
Al+4 

while A, and A, are physical constants to be determined by formulas 

(3.11). 

Thus, in case the contact width 2a(+) = 2a is not given, the unknown 

function y = y (t 1, entering into formula (3.49) for p(x, t 1, is determined 

from equation (3.56). If th e contact width 2a( t ) is not given and the 

contact takes place along smooth surfaces, then the unknown function 

y = y(t) is determined from the requirement that in formula (3.49) the 

first term, which represents the solution with singularities, vanishes, 

i.e. 

(3.57) 

Here o(s, t) is the solution of equation (3.13), while 2a = k(t) is 
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the variable contact width. ‘lhus, when the contact width 2a = 2a(t) is 

not given, the function y = y(t) is determined from equation (3.57). 

Once the function y = y(t) is determined from equation (3.57), the 

variable contact width 2a(t) may be obtained with the aid of the equi- 

librium equation (3.50). Substituting the expression for p(n, t) from 

(3.49) into (3.50), and taking (3.57) into account, we obtain after 

application of the Dirichlet formula 

(3.58) 

where D1 (a, t, y ) is determined by formula (3.42). 

Hence, equation (3.58) for the determination of the variable contact 

width 2a(t) coincides identically with equation (3.56) for the determin- 

ation of the function y = y(t), when the contact width 2a(t) = 2a is 

prescribed. 

As an application let us consider the contact problem of a rigid die 

with a rectilinear base, given by the width 2a on a half-plane under the 

conditions of nonlinear creep. In this case 

foW = 0, F(T t, 7) = P(L) (3.59) 

‘lhen the solution of the Volterra integral equation (3.13) o(x, t) 
will not depend on x and may be represented in the form 

61 (t) = yM (4 + \ r’* CT) R (t, T> & (3.60) 

Substituting the value of o(t) fr:m (3.60) into equation (3.56) and 

using equation (3.52), we obtain for the determination of the function 

y = y(t) 

(3.61) 

From equations (3.60) and (3.61) it follows invnediately that the 

solution (3.13) of the equation o(t) does not depend on time t either, 

that is 

(3.62) 

(X.63) 

where C(t, r ) is the measure of creep of the material of the half-plane. 
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Substituting the value o(t) = oO from (3.62) into (3.49) and noting 

that in accordance with (3.45) and (3.56) 

(3.64) 

We finally obtain the following formula for the determination of 

pressure p(x, t) on the contact area underneath the die: 

p I", 1) =P@) = 
r (7) r($)siny 

nl-$l/; 
(3.65) 

From the solution obtained (3.65) it is obvious, that if the contact 

between the compressed bodies is along a straight line, then the creep 

of the material of these bodies does not influence the law of stress 

distribution in the contact region and coincides with the stress value, 

corresponding to the plane contact problem of the theory of plasticity 

with a power law for strain hardening [9 1. 

For p = 1, that is, under the conditions of linear plasticity, formula 

(3.65) acquires the form 

(3.66) 

and coincides with the well-known solutions [l, 16 1 of the plane contact 

problem of the linear theory of creep and the linear theory of elasticity, 

which in the present case obviously coincide identically. 

In conclusion we note that if the contact between the compressed 

bodies is not along a straight line but along curvilinear surfaces, the 

creep of the material, as is seen from formulas (3.49) and (3.13), will 

significantly influence the picture of contact stress distribution. 

4. Antisymmetric contact problem of two bodies under the conditions 

of nonlinear creep. For an antisymnetric loading the right-hand 

(3.13) 

F (x, t, a) = 1~ (t) x - /o (x>Iw ( fo(4 = 
fl’ (4 + fz* lx) 

‘%+4 ) 

where a(t) is some function of t, to be determined later; f,(x) 

function, and A, and A are physical constants to be determined 

ulas (3.11) and are od$ functions in accordance with (3.22), in 

is an odd 

by form- 

the con- 

tact region of compressed bodies - a(t) < n< a(t) (in this case y = y(t) 

is equal to zero); therefore, its solution o(n, t) will be also an off 
function and then the first two terms on the right-hand side of formula 

(3.18) will vanish, and it will take on the following form: 

side of 

(3.67) 
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(3.68) 

Substituting the expression for a(s, a) and MS) from (3.37) and (3.38) 

into (3.68) we obtain 

Here 

CD, lu, t, a) = [ cd’ (sv t, ds 
0 I/(2$ - s2p ’ 

@‘(u, t, a) z.z -g-s O’ts, t)ds 
o I/@2 _ $)1* (3*70) 

‘lhe quantity K(p) is determined by equations (3.43) and w*(n, t) = 

o’[n,t, a(t) 1 represents a solution of the Volterra integral equation 

(3.13) with the right-hand side of (3.67). 

From relations (3.67) and (3.70) it follows that p(x, t) is an odd 

function and therefore it is sufficient to determine it in the interval 

0 < x S a(t), since p(-n, t) = - ptx, t). 

We note that the function w(x, t), being the solution of equation 

(3.13), depends also on the unknown function a = a(t), which is omitted 

here for the sake of brevity, i.e. o(x, t) = o *[ x, t, a(t)] . 

Integrating by parts the right-hand side of equation (3.69), having 

differentiated first with respect to x, we obtain 

+X 
Cl Ul*-’ [(I - IL) (De (U, t, U) - u@‘2 (IA, tq Ci)] d” s 
x I/(242 -- x2)V 1 (3.71) 

But by analogy with (3.45) we have in this case 

(3.72) 

Substituting this expression into (3.71), we finally obtain the follow- 

ing formula for p(x, t): 

In formula (3.73) the first term represents a solution with singularity 
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at the points x = f a and is subject to retention only in the case of 

given contact width 2a(t) = 2a; the value of the function a = a(t) is 

thereby determined from the equilibrium equation 
a 

M” = 2\p(s, t)zds (3.74) 

6 

Substituting p(n, t) from (3.71) into the equation‘ (3.74) we obtain 

A!, = 2K (p) { -$ @)z (x, t, z) B (I- f ) 4) + 

+ [Sdz[- r.P--? [(I - p) O2 (u, t, a) - u& (u, t, a)j du 

0 x ‘I/@% - xy 

(3.75) 

Here we used the value of the integral 

B(I+ f) us-p, B(p, q) = ‘rEfb9’ (3.76) 

Changing the order of integration in the second term of relation 

(3.75) and using equation (3.76), we find 

M,=K(p)B(l-$, $1 {a (4 4 4 + 

+(1-~p)~.m,(.,t,a)du-~i~~2’(u,t,a)d~} 
0 0 

(3.77) 

Integrating by parts the last term on the right-hand side (3.77), and 

then changing the order of integration, employing equations (3.521 and 

(3.43), we finally obtain the following equation, which relates the 

values a = a(t) with the moment of the external forces: 
a 

M,= sin l/2 7qk 

x (1 -p) (2-p) s 
(a2 - s~)‘-‘/zK o’ (s, t) ds 

0 

(3.78; 

Thus, when the contact width 2a(tl = 2a is given, then the unknown 

function a = a(t), which enters into the solution of the Volterra equa- 

tion (3.13) o(n, t) = o *Ix, t, a(t) I, is determined from equation (3.78). 

If, however, the contact width 2a(t) is not given and the contact 

occurs along smooth surfaces, then the unknown function a = a( t ) is de- 

termined from the requirement that in formula (3.73) the first term, re- 

presenting the solution with singularities, should vanish, i.e. 

(3.79) 

Consequently, when the contact width 2a(t) is not given, then a = a(t) 
is determined from equation (3.791, and the unknown contact width 2a(t) 
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with the aid of equation (3.78). 

As an application let us consider the contact problem of pressure of 
a rigid die with a plane base of a given width 2a(t) = 2a on the half- 
plane under the conditions of nonlinear creep, when to the center of the 
die a moment MO is applied. 

In this case, in accordance with (3.22) we shall have 

ffl (x) = 0, F (z, t, a) = a” (t) xp (3.80) 

‘Ihen the solution of the Volterra integral equation (3.13) will be 

(3.81) 

where R(t) r ) is the resolvent of the creep kernel K(t, r ) = dc(t, r )/Jr. 

From equations (3.81) and (3.791, eliminating ap(‘(t 1, we find directly 
that the solution of equation (3.13) o(z, t) does not depend on t and is 
equal to 

0 (x) = 4Mcl(l -P) xv 

wa 

Substituting this expression o(x) into (3.74) and noting that 

(3.82) 

(3.83) 

we reduce formula (3.74) for p(n, t) to the form (3.84) 

where K(p) is determined by relation (3.43). 

Let us denote the second term in formula (3.84) by (1 - ~)1,(x). We 
note that 19(x), being an odd function, is continuous in the whole inter- 
val - a< x Q a, with the exception at x = 0 where IU(x) is discontinuous; 
we have 

Ia( - 1, (- 0) = lim 5 a u’*-2dU 
2-r 0 s T Jquz - ,y ’ 

I, (-J- a) = 0 (3.85) 

The integral III(x) converges uniformly with respect to x: in the in- 
terval 0 < x < a. In fact, integrating Iq(x) by parts, we obtain 

a 

I, (2) = 
a”-3, cat _~ z?)l--'/l ‘* 1,; IL 

2 - p 
du (3.86) 

.X 
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From this the convergence of I,,(X) for the values 0 < x \< a is obvious. 

For x + + 0 it follows directly from relation (3.85), after substitu- 
tion of the integration variable u = x/t and the conditions cc\< 1 

(3.87) 

1, (+ 0) = - I4 (- 0) = j (1 - 52)1--l/NS = 
x1/L 

0 (1 - p) sin 1/z net* r (q) r [$-) 

In the following let us assume that at the point x = 0 

I, (0) = 
I4 (+ 0) + 14 (-- 0) = 

2 
0 (3.88) 

Formula (3.84) then takes on the form: 

P (4 = 
2M,d (p) (1 - P) j cP-% 

a2 sin ‘12 q 1 v(a2 -x2)’ 
+ (I-p)I,(s)} (0 < x<a) (3.89) 

while p(O) = 0. 

Substituting the value for I,,(x) from (3.86) into (3.89), and expand- 

ing the numerator of the integral function (u’ - x2 )I -PI* by the bi- 

nomial formula, we obtain after integration 

P (4 = 
2MoxK b)(1- 1-4 av’-‘x + (1 - I*) 

a”-3, (a2 _ z2)1--‘/~1* 

a2 sin II2 XP 1/(a2 -x2)’ 2-P 
+ 

k=co 

+ (3 - d (1 - 4 
c 

r (K-229 

2-p k-1 (2K - 1) r (K) r ($ -1) 

(3.90) 

Substituting the value K(p) from (3.43) into (3.91), we obtain the 
final formula for the determination of the pressure p(x) on the contact 
area underneath the die: 

p (2) = 2iV!,l’ (‘7) r (f) sin? I aw-l,: (1 _ p) .!I- 3X (n” _ z2)1-‘lr @ 

112% 1/G I I/@” - c??)W ’ 2 - :L 

+ 

k=CO 

L 0 - II) (1 - p) c r (IC - 2 -1 f) 

(2 - p) /;=I (zk- I) r (k) r (f - 1) 
[I- (g+‘]] (3.91) 

where p(O) = 0 and p( - x) =-p(x). 

It follows from the solution (3.91) that also in this case the creep 

of the material of the compressed bodies does not influence the law of 

contact stress distribution p(x), since the contact between these bodies 

is along a straight line. 

For p = 1, i.e. under the conditions of linear creep, the formula for 
p(x) (3.91) reduces to 
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(3.93) 

which coincides with the known solution [)l, 17 3 of the contact problem 
of the linear theory of creep or the linear theory of elasticity (in the 
present case, they coincide identically) for a plane die of width 2a, 
when a moment M, is applied at its center. 
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